Clinical guidelines on the application of buprenorphine in
the treatment of painful neuropathies and pain syndromes
in special patient populations

Guy Hans, MD, PhD
Multidisciplinary Pain Center, Antwerp University Hospital, Belgium

The author declares no conflicts of interest.

BUPRENORPHINE (BUP):
AN UNIQUE OPIOID ...
Buprenorphine (BUP): basic considerations

• Interaction with different opioid receptors
 - Mu-opioid receptor agonist
 - Delta-receptor antagonist
 • Norbuprenorphine acts as an agonist
 • Potentiating central analgesic effect
 - Kappa antagonist
 • Spinal dynorphine (kappa R agonist) increases during opioid administration
 • Less 'opioid-like' side effects
 - ORL-1-receptor agonism
 • Neuropathic pain

• Reside in the periphery, the dorsal root ganglion, the spinal cord, and in supraspinal regions associated with pain modulation
 – Distinctly different from μ-opioid
• Activate pain inhibitory pathways in the central nervous system
• Inflammatory state necessary?
 – Induces δ-opioid receptors to migrate to the surface of neuronal cells
 • Accessible to δ-opioid agonists
 – δ-agonists relief inflammatory pain and malignant bone pain

Need for δ-opioid receptor activity?

• The δ-receptor-selective drugs may possess potential clinical benefits compared with the μ-opioid receptor drugs, including:
 – Greater relief of neuropathic pain (Dickenson, 1997)
 – Reduced respiratory depression (Cheng et al., 1993)
 – Less constipation (Sheldon et al., 1990)
 – Minimal potential for the development of physical dependence (Cowan et al., 1988)
 • + anti-depressant-like effect …?
Kappa-opioid-receptor (KOP)

- “clinical” agonists for KOP display much side-effects
 - But: neuroprotective effects!
 - Do not cause respiratory depression
- KOP agonists display anti-opioid action
 - analgesia by endo/exo MOP agonists
 - KOP receptors within nucleus raphe magnus
 - Antagonists analgesic potency of μ-agonists

ORL-1 Opioid Receptor (NOP)

- N/OFQ has pronociceptive, anti-analgesic effect when applied supraspinally whilst spinally N/OFQ causes analgesia at high doses; low doses lead to hyperalgesia
- N/OFQ anti-opioid effect is caused by NOP receptor localization on, and inhibition of, primary cells of the NRM, analogous to the KOP receptor pathway
 - Endogenous N/OFQ act to set threshold to pain
 - NOP receptor antagonists shown to induce long lasting analgesia with similar efficacy to morphine
 - NOP receptor antagonists possible novel analgesics or maybe used as an adjuvant to reduce the amount of classical opioid drug required to produce analgesia

BUP interaction with ORL-1-R

- Interaction of BUP and metabolites with the ORL-1 receptor is complicated
 - Activation of receptor centrally in the brain produces anti-analgesic effects in animals, but at the spinal level in the same models the effect is anti-nociception
 - Central effect at the ORL-1 receptor dampens the dopaminergic reward system
 - Beneficial effects of the use of buprenorphine in the treatment of opioid abuse as well as multidrug abuse
 - ORL-1 activation slows the onset of opioid tolerance
 - Tolerance is less with chronic buprenorphine use than with other primary mu receptor agonists
BUP: clinical considerations - versatility

- Different routes of administration!
 - Spinal
 - Epidural
 - Intravenous (bolus)
 - Transdermal
 - Sublingual
 - Oral

UNIQUE OPIOID WITH DISTINCT CLINICAL PROPERTIES …

… BUT OFTEN MISUNDERSTOOD

Special patients populations to consider

- Neuropathic pain syndromes
- Cancer pain
- Intensive care unit (analgesedation)
 - Opioid-induced hyperalgesia (OIH)
- Post-traumatic/post-surgical painful syndromes
 - Acute analgesia
 - Chronic conditions
NEUROPATHIC PAIN

International guidelines: BUP?

Recommendations for the Pharmacological Management of Neuropathic Pain: An Overview and Literature Update

Robert M. Devorin, PhD; Allic R. O'Connor, MD; Joon A. Ahn, MD; Raal Bakon, MD; Maria C. Favaloro, PhD; Joseph J. Heagle, MD; Joel L. Kent, MD; Elliott J. Krane, MD; Alvin Z. Levy, MD; Robert M. Levy, MD; Sean C. Mackey, MD; Philips John Mayer, DC, PhD; Christian Marrow, RN, PhD; Stephen N. Rall, MD; Andrew S. C. Rees, MB, MS; FICA; Kenneth E. Schmid, MD; Brett Stover, MD; Steven Stover, DO; Raul-Delillo Trejo, Dr. Med; Dennis C. Tsuk, PhD; Gary A. Wallis, PhD; and Christopher H. Wells, MB

NICE: update on Neuropathic Pain (2013)
Value of buprenorphine in neuropathic pain
Omote et al. (1995)

- 2 patients suffering from post-amputation phantom limb
 - Intrathecal administration of buprenorphine
 - BUP produced complete and long-lasting relief
 - single intrathecal injection of 0.1 to 0.2 mg
 - resulted in a complete analgesia lasting for 3 days
 - all phantom sensations were completely abolished
 - significant increase in temperature of the lower part of the body following buprenorphine
 - sympathetic inhibitory effects or by effects on the spinal thermoregulatory system?

Analgesic effect of BUP in neuropathic pain
Zenz et al. (1992)

- Long-term oral opioid therapy in chronic non cancer related pain (n = 100)
 - 53 of whom suffered from neuropathic pain
 - Patients received prior opioid treatment without any clear pain-reducing effect were treated with BUP
 - Initial dose: 0.2mg three times a day
 - titrated to full pain reduction
 - or a maximum daily dose of 4.8 mg
 - Half the total patients showed good pain relief (decrease by 50% or more in visual analogue scale)
 - Lower daily BUP doses in patients with neuropathic pain (buprenorphine 1.3mg) than in non-neuropathic pain syndromes (1.6 mg)
Dose-response to BUP of nociceptive and neuropathic postoperative pain in patients following thoracic surgery (1)
Benedetti et al. (1998)

- Distinction between nociceptive postoperative pain (immediately after surgery) and postthoracotomy neuropathic pain (one month after surgery)
- One month after surgery 8 patients complained of shooting and burning pain with paraesthesiae and showed allodynia around the incision,
 - Remaining 13 patients were hypoesthetic, some even showing complete anesthesia
- All patients treated with i.v. buprenorphine in a double-blind randomized design
- Reduction of spontaneous pain symptoms, in both allodynic patients as well as in hypoesthesia
- Despite lower average pain scores one month after surgery (mean VAS = 6.71 immediately after surgery to mean VAS = 7.24 one month later), the ED50 increased after surgery (0.29 postoperatively compared to 0.50 after one month)
 - Neuropathic pain responds to BUP but higher doses of opioid than those which relieve nociceptive pain are necessary

Short- and intermediate-term analgesic efficacy of BUP-TDS in chronic painful neuropathies
Penza et al. (2008)

- Open-label study
- VAS score ≥ 5 under stable analgesic treatment
- The starting dosage of 35 µg/h was increased up to 70.0 µg/h in case of unsatisfactory pain control
 - The primary endpoint was the number of patients achieving at least 30% pain relief at day 42 visit.
- Treatment was considered safe over the study period
- Thirteen patients (40%) achieved > 30% of pain relief at the final day 42 visit
 - Five patients needed dosage of 52.5 µg/h
BUP Dosing in NeP: clinical considerations

- Dose related analgesic effect!
 - Higher doses have effect on descending inhibitory control system (DIC)
 - Most studies have looked at low dose either transdermally or sublingually
 - Higher doses now available either alone (Subitex®) or combined with naloxone (Suboxone®, Zubsolv®) for neuropathic pain would be an interesting area to study
 - Better analgesic efficacy of higher doses of BUP-TDS

CANCER PAIN

Myths: antagonistic effect on other opioids

- Difficulty to use BUP with other opioids or to switch from BUP to another opioid due to an antagonistic effect?
 - Clinically not a problem (no antagonistic effect!)
 - Mismatch of animal behavioral studies and clinical effects
 - Many of these older ideas and some conflicting data could be explained after analyzing the differential effects of BUP and its metabolites at the KOP and ORL-1 (NOP) receptors
Two recent trials have confirmed that no conflicts exist between morphine and buprenorphine.

- Patients (21% with cancer) receiving high-dose morphine (>120mg/day) were switched to BUP-TDS because of inadequate analgesia and severe adverse effects.
 - Better pain relief and high dose stability.

- In the second study (Mercandante et al.), iv boluses of morphine were highly effective (a reduction of >33% within 15 minutes) in combating breakthrough pain in 29 cancer patients whose basic analgesic regimen was BUP-TDS.
Buprenorphine TDS in routine clinical practice: multicenter, prospective, non-comparative, non-interventional post-marketing study

Tschirner et al. (2008)

- Chronic moderate to severe cancer pain, or chronic severe non-cancer pain that was insufficiently controlled by non-opioids were prescribed buprenorphine TDS
- Treatment outcomes and side effects were followed up for 3 months
 - Additional analgesia, and adjuvant/supportive treatments were allowed at discretion of physician
- N = 4,030 patients, with a mean age of 62.8 years
 - The vast majority of patients suffered from cancer-related pain (80.7%)
• Mean pain intensity decreased by 73.5% from 62.3 mm at baseline to 16.5 mm after 3 months
 – Most patients rated pain relief as ‘very good’ (41.4%) or ‘good’ (44.5%)
 – Sleep quality also improved. 48.1% of patients needed no additional analgesics during buprenorphine treatment
 – Most patients (96%) rated the BUP-TDS as ‘very easy’ or ‘easy’ to change.
 – At study end, it was planned to continue treatment with BUP TDS in 70.1% of patients

RCT on high dose BUP-TDS in cancer pain
Poulain et al. (2008)
• BUP-TDS (70μg/h) in 289 opioid-tolerant patients with severe cancer pain
 • Patients who were successfully treated with buprenorphine during a 14-day run-in phase were randomised to receive either active medication or placebo patches during the 14-day double-blind phase
 – Rescue medication (SL BUP 0.2mg)
 • Superior efficacy of BUP during the double-blind phase was statistically significant, despite the high placebo effect of the patch
 – Confirmed by secondary parameters such as pain intensity and consumption of rescue medication

BUP: not suitable to obtain rapid analgesia
• Buprenorphine is not useful for breakthrough pain by any route due to slow onset and long offset times
 – Despite high lipid solubility, similar to that of fentanyl, the onset time to effect and offset time are both prolonged
 • IV: onset time is 10–30 min (for fentanyl about 4 min), time to peak effect 70–100 min and duration 6–8 h
 • Despite high lipid solubility similar to fentanyl, it takes a long time after entering the CNS for buprenorphine to occupy receptors in brain tissue (biophase distribution) which means that receptor exposure is slow and long
POST-TRAUMATIC
(SURGICAL) PAIN

Post-traumatic/Post-surgical Pain

• Acute analgesia
 – Effective when given IV, IM, buccally, and sublingually but slow onset time reduces its usefulness for acute pain
 • onset time is similar with all modes of administration
 – due to the brain biophase effect
 – Epidural use has been described but onset time is not better since there will also be a biophase effect at the spinal level as well
 – Epidural use as an adjunct to other analgesics and started pre or during surgery/trauma would not be affected by the slow onset time
 • Thoracic injuries (rib fractures)

BUP as a perineural additive

• As adjunct BUP significantly ↑↑ duration of nerve blocks
 – At variety of anatomical sites
 – With a variety of local anesthetics
BUP as a perineural additive (2)

- Blocks voltage-gated Na\(^+\) channels via the local anesthetic binding site
 - Potent inhibitor of α-subunit of voltage-gated Na\(^+\) channels
 - Tonic block is concentration-dependent
 - Pronounced state-dependency with high-affinity block of inactivated channels
 - Much higher blocking potency than lidocaine
 - Even stronger than bupivacaine
 - High lipophilicity (octanol:water partition ration 2,000-100,000)
 - Relevance to preventive effect of BUP on development of hyperalgesia!

Other opioids?

- OR-independent inhibition of Na\(^+\) channels by other opioids
 - Meperidine (ratio of 39)
 - Comparable to lidocaine
 - Nav1.2 state-dependent block by sufentanil, fentanyl and tramadol
 - Morphine?
• Chronic conditions

 – Evidence from studies with BUP-TDS indicates that this is relatively safe and effective

 – BUP has been recommended in the population with a history of drug abuse and/or when risk of tolerance

 • Effect at the ORL-1 receptor dampens the brain reward system and the activity of buprenorphine at this class of receptors provides some evidence that there is less abuse potential

 • Slow onset/offset times make it less likely to be abused (little immediate “kick/high”)

ICU

Analgesia in ICU: practical problems

• Critically ill patients are often uncomfortable because of pain, anxiety, mechanical ventilation, …

• Discomfort is treated with continuous sedation, usually in combination with an opioid (intravenously)
 – Associated with prolonged mechanical ventilation and a longer stay
 • Shift from deep to light sedation is recommended
 • Analgesia-based sedation protocols are as effective as conventional hypnotic-based sedation protocols but that the required dose of hypnotic drug is reduced
 • Prolonged administration of opioids induces hyperalgesia
Analgesedation: a paradigm shift in sedation

- Hypnosis
- Analgesia
- ± Muscle Relaxation

Current practice parameters in ICU

- Morphine is cheap and longer acting than synthetic agents but more inclined to accumulate
 - Renal and hepatic impairment
- Fentanyl short-acting but risk of accumulation when given as a continuous infusion
 - Altered pharmacokinetics in critically ill
 - Different volumes of distribution
 - Different elimination half-lives
- Deleriogenic effects
- Immunosuppressive effects
- Chest-wall rigidity
- Gastric dysmotility

New approaches to analgo-sedation

- Opioids
 - Methadone
 - Buprenorphine: BUP-TDS combined with iv opioids
- Local anaesthetics: topical, iv and/or perineurally
- NMDA-antagonists
 - Ketamine
- Alpha-2 adrenergic agonists
 - Dexmedetomidine
- Nitrous oxide and oxygen
- (Micro-current) electrotherapy
Conclusion

- BUP has some unique basic and clinical properties
- Not useful for rapid analgesia (break-through pain)
- Very suitable for prolonged administration
 - "Opioid-resistant" pain conditions
 - Prevention of opioid-induced hyperalgesia
 - Prevention of tolerance (dose-escalation)
 - Peri-neural (additive) administration
- Need for high-quality clinical studies